Zespół badaczy z Uniwersytetu Warszawskiego (PACTT) pod kierunkiem prof. Jacka Jemielitego (Centrum Nowych Technologii UW) i dr hab. Joanny Kowalskiej (Wydział Fizyki UW) we współpracy z zespołem z Warszawskiego Uniwersytetu Medycznego (PACTT) oraz spółką spin-off UW ExploRNA Therapeutics opracował nową modyfikację mRNA.

W opinii profesora Jacka Jemielitego, prezesa ExploRNA, właściwości nowej cząsteczki mogą być przełomowe dla współczesnej medycyny. Dzięki odkryciu możliwy będzie dalszy rozwój nowoczesnych terapii celowanych opartych na technologii mRNA, w tym leczenie chorób rzadkich czy projektowanie szczepionek przeciwnowotworowych.

Wyniki badań zostały entuzjastycznie przyjęte przez zespół recenzentów prestiżowego czasopisma Journal of the American Chemical Society (JACS) i w ostatnich dniach trafiły na jego okładkę.

„Dzięki tej technologii świat medycyny może myśleć o znacznie szerszych zastosowaniach mRNA. Nie mówimy już tylko o produkcji szczepionek antycovidowych, które wydają się najprostszym zastosowaniem technologii mRNA. Tak efektywnie ulegającą translacji cząsteczkę mRNA można wykorzystać do projektowania nowych terapii przeciwnowotworowych, zastosować w leczeniu chorób rzadkich oraz różnych chorób o podłożu genetycznym” – mówi prof. Jacek Jemielity z Centrum Nowych Technologii Uniwersytetu Warszawskiego (CeNT).

Prace nad uniwersalnym, terapeutycznym mRNA

Badacze z UW poszukiwali takiej modyfikacji cząsteczki mRNA, która pozwoli uzyskiwać jak najwięcej terapeutycznego białka, przy jak najniższej dawce terapeutycznego mRNA. W niniejszej pracy badacze, inspirowani biologią, zaproponowali modyfikację końca 5’ mRNA, w pozycji, która ulega często naturalnym modyfikacjom w warunkach komórkowych (metylacja w pozycji N6 adenozyny jako pierwszego nukleotydu na końcu 5’). Jest to tak zwana modyfikacja posttranskrypcyjna, która zachodzi w komórkach już po biosyntezie mRNA. Warto podkreślić, że ta modyfikacja jest odwracalna i istnieje w komórkach enzym zdolny do jej usuwania (FTO). Funkcja tej naturalnej modyfikacji nie została dotychczas poznana, ale badania wskazują, że jest to związane z większą produktywnością mRNA. Naukowcy zastąpili grupę metylową na znacznie większą grupę benzylową. Okazało się, że doskonale imituje ona naturalną modyfikację pod względem własności mRNA, ale nie jest usuwalna przez enzym FTO. Dzięki temu syntetyczne mRNA jest niejako aktywowane pod względem produktywności i enzym FTO nie jest w stanie tej aktywacji wyłączyć. W praktyce pożądane białko, na produkcję którego zapisana jest instrukcja w takiej cząsteczce mRNA, jest wytwarzane w znacznie większych ilościach.

„Wprowadzona przez nas zmiana polega na przyłączeniu benzylu w określonym punkcie jednego z końców mRNA, tak zwanego kapu. Benzyl jest dołączony w charakterystycznym miejscu, w którym naturalne enzymy modyfikują mRNA dołączając do niego grupę metylową, po tym jak mRNA zostanie zsyntezowane. Te naturalne modyfikacje mRNA są odwracalne i mogą być usunięte. Zainspirowani biologią, postanowiliśmy samodzielnie zmodyfikować mRNA w tej pozycji w sposób trwały, badając jak to wpłynie na właściwości mRNA” – wyjaśnia dr Marcin Warmiński, pierwszy autor w pracy.

Badacze nadali modyfikacji nazwę AvantCap (wł. m6Am-cap–m7GpppBn6AmpG). W trakcie badań naukowcy dowiedli, że cząsteczka mRNA z AvantCap wykazuje w niektórych układach nawet 6-krotnie większą produktywność. Oznacza to, że przepis na produkcję konkretnego białka zawarty w tak zmodyfikowanej cząsteczce, spowoduje powstanie ponad 6-krotnie więcej białka w porównaniu do mRNA wykorzystującego technologię zastosowaną w szczepionkach anty-covid’owych. Podając tak zmodyfikowane mRNA będzie można uzyskać w organizmie efekt terapeutyczny przy znacznie niższej dawce. Co ciekawe, w pewnych specyficznych warunkach ta różnica bywa jeszcze większa (nawet 100-krotnie). Naukowcy próbowali wyjaśnić mechanizm stojący za zwiększoną produkcją białka w komórce dzięki wprowadzonej modyfikacji, ale wyniki badań nie są jeszcze jednoznaczne.

„To bardzo ciekawe zjawisko, ale jeszcze nie do końca wyjaśnione. Wiemy, że pewne naturalne modyfikacje zachodzące po transkrypcji mRNA w komórkach nadają cząsteczkom wyższy priorytet w translacji. Takie cząsteczki w pewnych warunkach są skuteczniej odkodowywane, co prowadzi do zwiększenia produkcji określonych typów białek. Wydaje się, że nasza modyfikacja daje taki właśnie rezultat – cząsteczki uzyskują pierwszeństwo w kolejce do wytwarzania białek. Być może mRNA staje się oporne na działanie jakiegoś enzymu wygaszającego jego nadzwyczajną aktywność biologiczną, ale zweryfikowanie tego wymaga dalszych badań. Najważniejsze, że w rezultacie modyfikacji mamy cząsteczkę mRNA o bardzo ciekawych walorach terapeutycznych” – dodaje dr hab. Joanna Kowalska.

(...) Cały artykuł przeczytasz na stronie Centrum Transferu Technologii i Wiedzy UW >> www.cttw.uw.edu.pl

Czy wyrażasz zgodę na przechowywanie cookies przez pactt.pl?

Zapisano